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Problem Description

e Given: A symmetric matrix A € R"*" in the bounded entry
model i.e ||A || < 1[1].

e Exact Eigenvalues: SVD, power methods, etc. require reading the

full matrix and have time complexity close to O(n").
e Faster methods available for PSD matrices.

e A can be indefinite (non-PSD).

e Problem: Estimate eigenvalues of A upto en additive error

without using the full matrix.

e Applications: optimization, dynamical systems, and spectral

graph theory.

Algorithm: Sampling Random Submatrices

e For each ¢ € |1, n|: sample ¢ w.p. 2: Sampled Set S.

e Get principal submatrix A g corresponding to indices in S.

o Calculate eigenvalues of A 5 and scale by .

Theorem 1 (Upper bound)

For any \;(A), such that |\;(A)| > eV/dn, if s > O(-5),
with probability at least 1 — 0, we have,

M(A) —en < “N(Ag) < M(A) +en. (1)

S

® Need to sample submatrix with size é: sublinear in n.

Proof Techniques

e Eigendecomposition of A: A = A, + A,,.
o A,: all “large” eigenvalues of A with |\;(A)| > evdn.
o A,,: all “small” eigenvalues of A with )\;(A) < e\ on.
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o Ag=A,s+ A,,s (after sampling).
¢ Eigenvalue Perturbation Theorem: |)\;(Ag) — \(Ays)| < || As]o-

e Bound small eigenvalues || A, s||» using known spectral norm

bounds from Tropp [2].

e Intuition: Incoherent eigenvectors of A ,: By proposition 3.4 of

with \;(A)). Since eigenvectors of A, are spread out (incoherent),

1 . . .
T||oo < 7> (@ is the eigenvector associated

uniform sampling preserves the values approximately.

e Formally, bound large eigenvalues \;(A,s) using an application

of Matrix Bernstein bound.

e Connection to leverage score sampling: Since eigenvectors are
incoherent, leverage scores of the rows of the matrix of
eigenvectors of A, are bounded. Thus we can sample using

leverage scores to get close spectral approximation.

L.ower Bound

Theorem 2 (General lower bound)
We need at least Q(é) samples of any n X n symmet-
ric matrix to get a (1 + €) factor approximation of the

minimum eigenvalue with high probability.

e Generate 2 symmetric n X n matrices with 0/1 entries by tossing 2

coins with probability of heads 0.5 and 0.5(1 + ¢).

e Maximum eigenvalue of these matrices follows a normal

distribution asymptotically (Furedi and Kolmos).

» Need at least () samples to distinguish between the coins.

Open Questions

e Can sample complexity of upper bound be reduced to O(1/¢)?

Empirical evaluation

Dataset. We use a synthetic dataset created by uniformly sam-
pling 5000 points from a binary image. We then compute the sim-
ilarity function, 0, using the following two measures: (a) Sigmoid:

0(x,y) = tanh (Ox—ﬂ), and (b) Thin plane spline (TPS): d(z,y) =
=il g (—‘w;y ’2>.
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Figure: Eigenvalue estimates. Eigenvalues of sigmoid and TPS matrices.
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Figure: Error estimates. Estimation errors of sigmoid and TPS matrices.
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