UMassAmherst

Sublinear Time Eigenvalue Approximation via Random Sampling Rajarshi Bhattacharjee^{*}, Gregory Dexter[†], Petros Drineas[†], Cameron Musco^{*} and Archan Ray^{*}

Problem Description

Given: A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ in the bounded entry model *i.e* $\|\mathbf{A}\|_{\infty} \leq 1$ [1]. A can be indefinite.

Exact Eigenvalues: SVD, power methods, etc. require reading the full matrix and have time complexity close to $O(n^{\omega})$. Can **approximate** top k largest magnitude eigenvalues using $\tilde{O}(k)$ matrix vector multiplications with A (power method, Krylov subspace methods, etc.) $\tilde{O}(n^2 \cdot k)$ time for dense matrices. **Goal**: Approximate the spectrum in sublinear *i.e.* $o(n^2)$ time for dense matrices.

Bounded entry assumption: Otherwise, a single pair *i.e.* A_{ij} and A_{ii} can be arbitrarily large and dominate the top eigenvalues. Finding this pair takes $\Omega(n^2)$ time.

Approximation using Uniform Sampling

Theorem 1	
There is an algorithm that reads C	$\tilde{O}\left(\frac{\log^6 n}{\epsilon^6}\right)$
of a symmetric A with $\ A\ _{\infty} \leq$	1 and
$\tilde{\lambda}_1, \tilde{\lambda}_2, \cdots, \tilde{\lambda}_n$ such that, $\forall i \in [n]: \lambda_i - \lambda_i $	$\widetilde{\lambda}_i \leq$

A_S: **Random principal submatrix** of **A** where each row/column is included independently with probability $\frac{s}{n}$ $(s = \frac{c \log^3 n}{\epsilon^3})$. Compute all eigenvalues of $\frac{n}{s} \mathbf{A}_S$: use these to approximate $\lambda_i(\mathbf{A})$. Need to **align** the eignevalues correctly.

{rbhattacharj, cmusco, ray}@cs.umass.edu, {gdexter, pdrineas}@purdue.edu *Manning College of Information and Computer Sciences, UMass Amherst [†]Department of Computer Science, Purdue University

Aligning Eigenvalues

 A_S has only O(s) eigenvalues but A has n eigenvalues.

O(s) eigenvalues of $\frac{n}{s}A_S$

{105, 56, 32, -1, -6, -76}

{105, 56, 32, 0, 0, 0, 0, 0, -1, -6, -76} n approximate eigenvalues of A

Lower Bounds

General lower bound: of $O\left(\frac{1}{\epsilon^2}\right)$ total samples to distinguish an all zeros matrix from a matrix with a $O(\epsilon n \times \epsilon n)$ block of ones. For principal submatrices – need at least $\tilde{O}\left(\frac{1}{\epsilon^2} \times \frac{1}{\epsilon^2}\right)$ samples. [2].

Proof Techniques – Uniform Sampling

Key Proof Idea: Split A into its outlying and middle eigenvalues analyze each component separately.

Let A: $\mathbf{A} = \mathbf{A}_o + \mathbf{A}_m$ where $\mathbf{A}_o = \mathbf{V}_o \mathbf{\Lambda}_o \mathbf{V}_o^T$ and $\mathbf{A}_m = \mathbf{V}_m \mathbf{\Lambda}_m \mathbf{V}_m^T$ where Λ_o , Λ_m are diagonal matrices, with eigenvalues of A with magnitude $\geq \epsilon n$ and $< \epsilon n$ on their diagonal respectively. $\frac{n}{s} \cdot \mathbf{A}_S = \mathbf{S}^T \mathbf{A} S = \mathbf{S}^T \mathbf{A}_o \mathbf{S} + \mathbf{S}^T \mathbf{A}_m \mathbf{S}.$

Key Proof Idea: Since A has bounded entries, the outlying eigenvectors of A, V_o are all **incoherent** i.e. their mass is spread out $- \| [\mathbf{V}_o]_{i,:} \|_2 \leq \frac{1}{\epsilon^2 n}$. So uniform sampling approximately preserves eigenvalues of A_o . Thus, non-zero eigenvalues of $S^T A_o S$ approximate eigenvalues of A up to $\pm \epsilon n$ error.

Use incoherence of A_o to argue $A_m = A - A_o$ is entrywise bounded and thus, $\|\mathbf{S}^T \mathbf{A}_m \mathbf{S}\|_2 \leq \epsilon n$ using known spectral norm bounds. Finally combine the above using Weyl's inequality $\|\frac{n}{s} \cdot \mathbf{A}_{S} - \mathbf{A}_{S}\|$ $\mathbf{S}^T \mathbf{A}_o \mathbf{S} \|_2 \le \| \mathbf{S}^T \mathbf{A}_m \mathbf{S} \|_2 \le \epsilon n.$

entries d outputs ϵn .

Approximation using Sparsity Sampling

Theorem 2

There is an algorithm that reads $\tilde{O}(\frac{\log^{10} n}{\epsilon^{16}})$ entries of a symmetric A with $\|A\|_{\infty} \leq 1$ and outputs $\tilde{\lambda}_1, \cdots, \tilde{\lambda}_n$ such that, $\forall i \in [n]: |\lambda_i - \tilde{\lambda}_i| \leq \epsilon \sqrt{\mathrm{nnz}(\mathbf{A})}$.

Key Step: Let A' be equal to A but with $A'_{ii} = 0$ $\sqrt{\operatorname{nnz}(\mathbf{A}_i)\operatorname{nnz}(\mathbf{A}_j)} \leq \frac{\epsilon\sqrt{\operatorname{nnz}(\mathbf{A})}}{c\log n}$ A_S : Random principal submatrix of A' where each i^{th} row/column is included independently with probability $p_i \geq \min\left(1, \frac{s \operatorname{nnz}(\mathbf{A}_i)}{\operatorname{nnz}(\mathbf{A})}\right)$ $(s \approx \frac{c \log^8 n}{\epsilon^8}).$

Let D be a diagonal matrix with $D_{i,i} = \frac{1}{\sqrt{p_i}}$. Compute all eigenvalues of $\mathbf{DA}_S \mathbf{D}$: use these to approximate $\lambda_i(\mathbf{A})$. Key Idea: Zeroing out entries ensures that after sampling and scaling, no entries are scaled up by too much. Can show $\|\mathbf{A}' - \mathbf{A}\|_2 \leq \|\mathbf{A}\|_2$ $\epsilon_{\sqrt{nnz}}(\mathbf{A})$; can be thought of generalization of Girshgorin theo**rem**. Allows us to extend our uniform sampling proof. Extensions to ℓ_2 sampling – sample with $p_i \ge \min\left(1, \frac{s \|\mathbf{A}_i\|_2^2}{\|\mathbf{A}\|_{T}^2}\right)$, zero out and scale appropriately to get $\pm \epsilon \|\mathbf{A}\|_F$ error without bounded entry assumption.

Obtain tight $O(\frac{1}{\epsilon^2})$ query complexity for computing $\pm \epsilon n$ approximation. Requires going **beyond principal submatrix sampling**.

How to estimate **bulk spectral properties** like Schatten norm using $o(n^2)$ queries.

References

- 727-746. SIAM, 2019.
- submatrices. arXiv preprint arXiv:2005.06441, 2020.

Open Questions

[1] Balcan, M.-F., Y. Li, D. P. Woodruff, et al. Testing matrix rank, optimally. In *Proceedings* of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages