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Problem Description

Given: A symmetric matrix A ∈ Rn×n in the bounded entry
model i.e ‖A‖∞ ≤ 1 [1]. A can be indefinite.

Exact Eigenvalues: SVD, power methods, etc. require reading the

full matrix and have time complexity close to O(nω).

Can approximate top k largest magnitude eigenvalues using Õ(k)
matrix vector multiplications with A (power method, Krylov sub-

space methods, etc.) Õ(n2 · k) time for dense matrices.

Goal: Approximate the spectrum in sublinear i.e. o(n2) time for

dense matrices.

Bounded entry assumption: Otherwise, a single pair i.e. Aij and

Aji can be arbitrarily large and dominate the top eigenvalues. Find-

ing this pair takes Ω(n2) time.

Approximation using Uniform Sampling
Theorem 1
There is an algorithm that reads Õ(log6 n

ε6 ) entries

of a symmetric A with ‖A‖∞ ≤ 1 and outputs

λ̃1, λ̃2, · · · , λ̃n such that, ∀i ∈ [n]: |λi − λ̃i| ≤ εn.

AS: Random principal submatrix of A where each row/column

is included independently with probability s
n (s = c log3 n

ε3 ).

Compute all eigenvalues of nsAS: use these to approximate λi(A).

Need to align the eignevalues correctly.

Aligning Eigenvalues

AS has only O(s) eigenvalues but A has n eigenvalues.

Lower Bounds

General lower bound: of O
( 1
ε2

)
total samples to distinguish an all

zeros matrix from a matrix with a O(εn× εn) block of ones.

For principal submatrices – need at least Õ
( 1
ε2 × 1

ε2

)
samples. [2].

Proof Techniques – Uniform Sampling

Key Proof Idea: Split A into its outlying and middle eigenvalues

analyze each component separately.

Let A: A = Ao+ Am where Ao = VoΛoVT
o and Am = VmΛmVT

m

where Λo, Λm are diagonal matrices, with eigenvalues of A with

magnitude ≥ εn and < εn on their diagonal respectively.
n
s ·AS = STAS = STAoS + STAmS.

Key Proof Idea: Since A has bounded entries, the outlying eigen-

vectors of A, Vo are all incoherent i.e. their mass is spread out

– ‖[Vo]i,:‖2 ≤ 1
ε2n. So uniform sampling approximately preserves

eigenvalues of Ao. Thus, non-zero eigenvalues of STAoS approxi-

mate eigenvalues of A up to ±εn error.

Use incoherence of Ao to argue Am = A−Ao is entrywise bounded

and thus, ‖STAmS‖2 ≤ εn using known spectral norm bounds.

Finally combine the above using Weyl’s inequality ‖ns · AS −
STAoS‖2 ≤ ‖STAmS‖2 ≤ εn.

Approximation using Sparsity Sampling
Theorem 2
There is an algorithm that reads Õ(log16 n

ε16 ) entries of a

symmetric A with ‖A‖∞ ≤ 1 and outputs λ̃1, · · · , λ̃n
such that, ∀i ∈ [n]: |λi − λ̃i| ≤ ε

√
nnz(A).

Key Step: Let A′ be equal to A but with A′ij = 0√
nnz(Ai) nnz(Aj) ≤

ε
√

nnz(A)
c log n

AS: Random principal submatrix of A′ where each ith row/column

is included independently with probability pi ≥ min
(
1, s nnz(Ai)

nnz(A)

)
(s ≈ c log8 n

ε8 ).

Let D be a diagonal matrix with Di,i = 1√
pi

. Compute all eigenval-

ues of DASD: use these to approximate λi(A).

Key Idea: Zeroing out entries ensures that after sampling and scal-

ing, no entries are scaled up by too much. Can show ‖A′ −A‖2 ≤
ε
√

nnz(A); can be thought of generalization of Girshgorin theo-
rem. Allows us to extend our uniform sampling proof.

Extensions to `2 sampling – sample with pi ≥ min
(
1, s‖Ai‖2

2
‖A‖2

F

)
, zero

out and scale appropriately to get ±ε‖A‖F error without bounded

entry assumption.

Open Questions

Obtain tight Õ( 1
ε2) query complexity for computing ±εn approxi-

mation. Requires going beyond principal submatrix sampling.

How to estimate bulk spectral properties like Schatten norm using

o(n2) queries.
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