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PURDUE

Problem Description

Given: A symmetric matrix A € R"*" in the bounded entry
model i.e ||A ||, < 1[1]. A can be indefinite.

Exact Eigenvalues: SVD, power methods, etc. require reading the

full matrix and have time complexity close to O(n").

Can approximate top & largest magnitude eigenvalues using @(k)
matrix vector multiplications with A (power method, Krylov sub-

space methods, etc.) O(n” - k) time for dense matrices.

Goal: Approximate the spectrum in sublinear i.e. o(n”) time for

dense matrices.

Bounded entry assumption: Otherwise, a single pair i.e. A;; and
A ; can be arbitrarily large and dominate the top eigenvalues. Find-

ing this pair takes €)(n”) time.

Approximation using Uniform Sampling

. . ~ 1ot .
There 1s an algorithm that reads 0(10§6”) entries

of a symmetric A with [|[All., < 1 and outputs

AL, Ao, - -+, A, such that, Vi € nl: | A — 5\2-\ < en.

A s: Random principal submatrix of A where each row/column

is included independently with probability * (s = %),

Compute all eigenvalues of A s: use these to approximate A;(A).

Need to align the eignevalues correctly.
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Aligning Eigenvalues

A g has only O(s) eigenvalues but A has n eigenvalues.

O(s) eigenvalues of %AS

{105, 56, 32, -1, -6, -76}

/7 NN

{105, 56, 32, -1, -6, -76}
n approximate eigenvalues of A

L.ower Bounds

General lower bound: of O (é) total samples to distinguish an all

zeros matrix from a matrix with a O(en x en) block of ones.

For principal submatrices — need at least O (é X 6—12) samples. [2].

Proof Techniques — Uniform Sampling

Key Proof Idea: Split A into its outlying and middle eigenvalues

analyze each component separately.
Let A: A=A, +A, where A, = VOAOVZ and A,, = VmAng

where A,, A,, are diagonal matrices, with eigenvalues of A with

magnitude > en and < en on their diagonal respectively.

~-Ag= STAS =S"A,S+SYA,S.

Key Proof Idea: Since A has bounded entries, the outlying eigen-
vectors of A, V, are all incoherent 1.e. their mass is spread out
— |[[Volill2 < =-. So uniform sampling approximately preserves

eigenvalues of A,. Thus, non-zero eigenvalues of S A S approxi-

mate eigenvalues of A up to Zen error.

Use incoherence of A, to argue A,, = A— A, is entrywise bounded

STA,.S|l> < en using known spectral norm bounds.

and thus,
Finally combine the above using Weyl’s inequality ||~ - Ag —
STAS|, < ||STA,,.S]2 < en.

such that, Vi € [n]: [\ — \i| < e\/nnz(A).
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Approximation using Sparsity Sampling

Theorem 2

. . ~ ]‘6 .
There is an algorithm that reads O(k’fmn) entries of a

~S

symmetric A with ||A|lx < 1 and outputs Aj,--- , A,

Key Step: Let A’ be equal to A but with A}, = 0
e/ nnz(A)
\/nnz(AZ-) nnz(A,;) < \élogn

As: Random principal submatrix of A’ where each i row/column

1s included independently with probability p;, > min (17 Sr?r?zz(ﬁ)i))

cloeg:n).

(s =

1
N
ues of DA ¢D: use these to approximate \;(A).

Let D be a diagonal matrix with D, ; = Compute all eigenval-

Key Idea: Zeroing out entries ensures that after sampling and scal-

ing, no entries are scaled up by too much. Can show ||[A’ — A||; <

e\/ nnz(A); can be thought of generalization of Girshgorin theo-

rem. Allows us to extend our uniform sampling proof.

Extensions to /; sampling — sample with p;, > min ( 1 S“Ai”%), Zero

— > [[A]lF
out and scale appropriately to get +¢||A || p error without bounded

entry assumption.

Open Questions

Obtain tight O(é) query complexity for computing +en approxi-
mation. Requires going beyond principal submatrix sampling.

How to estimate bulk spectral properties like Schatten norm using

o(n*) queries.

References
[1] Balcan, M.-F,, Y. Li, D. P. Woodruff, et al. Testing matrix rank, optimally. In Proceedings

of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
727-746. SIAM, 2019.

[2] Bakshi, A., N. Chepurko, R. Jayaram. Testing positive semi-definiteness via random

submatrices. arXiv preprint arXiv:2005.06441, 2020.



	References

