
RESEARCH STATEMENT

Archan Ray (ray@cs.umass.edu)

1. Introduction

The need for fast algorithms cannot be overstated in an age where the size of datasets as well
as parameters required in learning algorithms has grown rapidly [47, 27, 32, 20]. There are several
ways to accelerate processing of large data, and sublinear algorithms form an important cornerstone
of such methods. Sublinear algorithms access only a small part of the input data, thus they scale
well to very large datasets.

A major focus of my work is on the development of fast and especially sublinear algorithms. My
recent works have been on pushing the boundaries of sublinear time or sublinear query algorithms in
the context of matrices and their applications. Matrices are ubiquitous mathematical structures in
both computer science and, in particular, machine learning, and are often used to represent data
and parameters of learning models. As such, very large datasets and complex learning models have
led to a requirement for efficient computational algorithms. Since only a small part of the original
matrix is observed, approximation of the the full matrix is inherent to sublinear algorithms. One of
my primary goals is to establish theoretical and empirical bounds on the error of approximation. My
research is driven by two major themes:

Theoretical Analysis of Sublinear Methods. My work has contributed to the development of fast
algorithms for several core problems involving matrices. These include eigenspectrum approximation,
singular value and vector approximation, testing whether all eigenvalues of a matrix are positive, and
low-rank approximation of matrices. These properties provide valuable insights into the low-rank
structure of matrices, the clusterability of data points, and play a pivotal role in various engineering
and experimental problems.

Our work appearing in ICALP 2023 [1], gives the first sublinear algorithms that compute non-
trivial approximations to all the eigenvalues of a symmetric matrix using various random sampling
techniques. We extend these results to deterministic sampling algorithms in our work appearing at
ITCS 2024 [2]. In our work, we develop an algorithm that approximates symmetric matrices in the
spectral norm using element-wise sparsification. Similar results can be obtained with high probability
using uniform sampling [24]. Surprisingly, our work shows that there exists a fixed set of entries
that can be sampled from all bounded entry symmetric matrices to achieve similar approximation
guarantees. We further extend our algorithms to obtain the first deterministic sublinear query
algorithms for eigenspectrum approximation, and the first o(nω) deterministic algorithms that can
compute singular value and vector approximations [2], where ω ≈ 2.37 is the exponent of the matrix
multiplication [19, 5].

Implicit matrices enhance efficiency in various applications, especially when the matrix is a function
of another (e.g., covariance or Hessian matrices). Computing such functions can be expensive, but
using algorithms that can query a matrix A with a vector vi offers a more computationally efficient
approach. These algorithms are called matrix-vector query algorithms. Considering that matrix-
vector query algorithms can be effiently parallelized in distributed systems and can be significantly
faster when a function of matrix is of interest, it is important to study matrix-vector query algorithms.
Our recent work [3] explores eigenspectrum approximation using matrix-vector queries. Notably,
research [49] shows that a query-optimal non-adaptive algorithm can approximate symmetric matrix
eigenvalues with error ϵ∥A∥F . We demonstrate existence of a wider class of adaptive matrix-
vector query algorithms that are nearly query optimal. We also show that one of these adaptive
algorithms can be converted to a non-adaptive matrix-vector query optimal algorithm. While these
algorithms achieve the eigenvalue approximation error of ϵ∥A∥F with near-optimal matrix-vector
query complexity, it is also important to understand how they perform empirically. To this end, our



experiments demonstrate that matrix-vector query algorithms that non-trivially approximate a larger
number of eigenvalues in the eigenspectrum of a matrix perform better when minimizing the largest
error of approximation of any eigenvalue is of interest. Note that for a fixed number of matrix-vector
queries, adaptive methods non-trivially approximates a smaller number of eigenvalues as compared
to the non-adaptive algorithms. Thus, when minimizing the largest error of approximation of any
eigenvalue is of interest, the non-adaptive matrix-vector query algorithms are empirically superior.
However, when the approximating the extremal eigenvalues of a matrix is of interest, the adaptive
matrix-vector query algorithms significantly outperform the non-adaptive algorithms.

Applications of Sublinear Methods. In parallel to theoretical analysis, I am also interested
in applications of theoretically motivated matrix approximation algorithms to various domains.
We have demonstrated the empirical performance of randomized algorithms in approximation of
eigenvalues of symmetric matrices on several synthetic and real world matrices [1]. Moreover in our
work appearing in AAAI 2022 [4], we have shown that low-rank approximation of matrices can be
used to develop fast algorithms for machine learning with application in natural language processing
(NLP). Specifically, we show that matrix approximations can maintain downstream task performance
in three core NLP tasks – 1) document embedding, 2) approximating similarity matrices generated
using cross-encoders [20] and 3) approximating the similarity function used to determine coreference
relationships across documents. One of my long term goals is to develop a toolkit that can be used
to maintain performance of learning algorithms while also significantly speeding up computation.
This can then be applied to develop fast learning algorithms that are computationally efficient.

In the following paragraphs I summarize my research and how they tie into the general research
themes mentioned above.

2. Theoretical Analysis of Sublinear Methods

Sublinear time or sublinear query algorithms can significantly improve computation complexity of
various problems in computer science and linear algebra. Although significant work exists that uses
sublinear algorithms to approximate matrices, several avenues remain open. We begin by describing
our work on approximating the eigenvalues of a symmetric matrix.

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
Log sampling rate

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

Lo
g 

of
 a

ve
ra

ge
 sc

al
ed

 a
bs

ol
ut

e 
er

ro
r

Arxiv: largest eigenvalue

uniform random sample
simple sparsity sampler
sparsity sampler 0.1
approximation by 0

Figure 1. Log of the average scaled absolute ap-
proximation error vs. log of the sampling rate for our
random sampling algorithms compared with approxi-
mation by 0, for approximating the largest magnitude
eigenvalue of the adjacency matrix of the graph of
co-references in condensed matter papers in arXiv
[34].

Eigenvalue Approximation. Eigenvalues are ex-
tensively studied in various fields, with applications
in engineering, optimization, data analysis, spectral
graph theory, and other fields. Computing eigen-
values with high accuracy using traditional matrix
multiplication methods for dense matrices requires
O(nω) runtime. However, in practice, the runtime
is closer to O(n3). As the dimension of the matrix
(n) increases, this computational complexity becomes
intractable.

In our work [1], we propose a sublinear time ran-
domized algorithm that approximates all the eigen-
values of a symmetric matrix with bounded entries
by sampling a random principal submatrix of the
input matrix. Our result can be viewed as a con-
centration bound on the complete eigenspectrum of
a random submatrix, significantly extending known
bounds on just the singular values (the magnitudes
of the eigenvalues) [13, 46, 26]. Specifically, for any
matrix A ∈ Rn×n with a maximum entry magnitude ∥A∥∞ ≤ 1, our work demonstrates that a



simple algorithm can approximate all the eigenvalues of A with additive error of up to ±ϵn by
randomly sampling an Õ

(
log3 n
ϵ3

)
× Õ

(
log3 n
ϵ3

)
principal submatrix of A with high probability. We

also give improved error bounds when the rows of the input matrix can be sampled with probabilities
proportional to their sparsities or their squared ℓ2 norms. Even for the strictly easier problems
of approximating the singular values or testing the existence of large negative eigenvalues [6], our
results are the first that take advantage of non-uniform sampling to give improved error bounds.

A comparison of these algorithms can be seen in Figure 1. The plot demonstrates that our methods
achieve very good approximations even at a low sampling rate. For real world graphs, such as the
adjacency matrix of the arXiv co-reference graph [34], which have a power-law degree distribution,
sparsity based sampling techniques significantly outperform other sampling algorithms.

Deterministic Spectral Approximation. Although randomized algorithms are prevalent in the
literature on matrix approximation, no deterministic algorithm had existed for computing eigenvalues
of symmetric matrices in sublinear time. We observe that any algorithm that can approximate a
matrix in the spectral norm, directly gives an eigenvalue approximation error bound via Weyl’s
inequality [53, 8]. In [2], we develop the first deterministic algorithms that approximate all symmetric
matrices with bounded entries in the spectral norm using sublinear queries. Specifically, we observe
that any matrix S ∈ Rn×n that satisfies ∥1− S∥2 ≤ ϵn, where 1 is the all-ones matrix, also yields
universal sparsifiers for any bounded-entry positive semidefinite (PSD) matrix. That is, given a
PSD matrix, A with ∥A∥∞ ≤ 1, ∥A−A ◦ S∥2 ≤ ϵn. Our results also extend to non-PSD matrices,
with a tighter error bound of ϵ ·max(n, ∥A∥1), where ∥A∥1 is the nuclear norm of A. Moreover, we
demonstrate that the number of entries in A that needs to be read by such sparsifiers is near-optimal
(tight up to logarithmic factors). A matrix S satisfying the bound on the all-ones matrix can be
optimally constructed using the adjacency matrix of a Ramanujan graph with the appropriate
number of non-zero entries.

These results immediately yield the eigenvalue approximation error bound for all symmetric
matrices. Furthermore, we extend these algorithms to give the first o(nω)-time deterministic
algorithms for several central problems related to singular value and singular vector approximations.
Additionally, we present the first o(nω)-time deterministic algorithm to test whether all the eigenvalues
of a matrix is greater than 0 or if the smallest eigenvalue is at least −ϵmax(n, ∥A∥1). An optimal
randomized algorithm for this problem with detection threshold −ϵn was presented in [6]. Thus our
work in [2] significantly extends the boundaries of deterministic algorithms in these applications.
The success of these applications thus opens up the possibility for new classes of fast deterministic
algorithms for general matrices.

Spectrum Approximation using Matrix-Vector Algorithms. We also study eigenvalue ap-
proximation in the matrix-vector query model [48, 45]. Within this model, the underlying matrix
A ∈ Rn×n is often implicit and can only be accessed by using matrix-vector queries of the form
Ax ∈ Rn where x ∈ Rn is the query vector. x can be chosen randomly and possibly adaptively – i.e.,
at time t, xt can be chosen based on the prior observations Ax1,Ax2, . . . ,Axt−1 ∈ Rn using query
vectors x1,x2, . . . ,xt−1 ∈ Rn. When xt is chosen non-adaptively, the matrix-vector query algorithms
are often called linear sketching. Example applications of matrix-vector query algorithms include
Lanczos or Krylov methods [40], testing if a matrix is PSD [43], and matrix sketching algorithms
[55]. Moreover, given the current advancements in hardware capabilities, matrix-vector products can
be computed in a distributive and parallel setting, resulting in very fast algorithms.

Given the matrix-vector query model, we theoretically and empirically investigate algorithms
that approximate the eigenvalues of A. In [50], the authors show that the query complexity of
approximating each eigenvalue of a symmetric matrix A up to error ϵ∥A∥F is Ω(1/ϵ2) using a query
optimal non-adaptive algorithm. Moreover, [50] also demonstrates that the lower bound query
complexity for any matrix-vector query algorithm (both adaptive and non-adaptive) is Ω(1/ϵ2).



In our work [3], we empirically investigate the practical computational overhead for achieving
eigenvalue approximation using several matrix-vector query algorithms. Particularly, we investigate
the spectrum of matrix-vector algorithms ranging from non-adaptive to massively adaptive algorithms,
and study how adaptivity affects practical performance of these algorithms to approximate the
eigenspectrum of a matrix.

We show that there is a spectrum of adaptive matrix-vector query algorithm which uses O(log n)-
factor optimal matrix-vector queries to approximate all the eigenvalues of the input matrix. We
also introduce a new non-adaptive algorithm that matches the sampling complexity lower bound
given in [50]. Empirically, we observe that for a fixed number of matrix-vector queries, non-adaptive
algorithms outperform adaptive algorithms when the error is measured in the ℓ∞-norm. This is
because a wider range of eigenvalues of the input matrix are approximated non-trivially using
non-adaptive algorithms for any fixed number of matrix-vector queries by any adaptive algorithm.
When approximating the largest magnitude eigenvalue of a symmetric matrix is of interest adaptive
methods outperform non-adaptive algorithms. We summerize these observations in Figure 2. In
the asymptotic limit, the query complexity bound is theoretically consistent (ignoring constant log
factors) across all matrix-vector query algorithms. Our empirical observations help us understand
their differences in performance under various error norms. This study helps in designing algorithms
which can deployed in a distributed and parallel setting, leading to very fast algorithms which
requires computing eigenvalues. Moreover, the interplay between number of matrix-vector queries
and adaptivity would help in the choice of algorithms to approximate eigenvalues under specific
constraints or requirements.

2 3 4 5 6 7 8 9
Log matvecs

6

5

4

3

2

1

0

M
ea

n 
lo

g 
ab

s e
rro

rs

Maximum eigval=162.374

(a) Mean log ℓ∞ error vs log matrix-vector
queries.

0 200 400 600

20

10

0

10

20

30

40

50

3400 3600 3800 4000
Eigenvalue indices

Ei
ge

nv
al

ue
s

(b) Approximate eigenvalues for 1220±20
matrix-vector queries.

2 3 4 5 6 7 8 9
Log matvecs

40

30

20

10

0

M
ea

n 
lo

g 
ab

s e
rro

rs

Eigval=162.374

(c) Approximation error of the largest
magnitude eigenvalue.

bki_adp_Q_10
bki_adp_Q_20

oth_adp_full
oth_nonadp_full

sw_nonadp_full
true

Figure 2. Summary of observations for Facebook adjacency matrix [39]. Here we present some key
observations of using various matrix-vector query algorithms to approximate eigenvalues of the Facebook adjacency
matrix [39]. In Figure 2a we plot the mean log scaled absolute ℓ∞-error vs the number of matrix-vector queries made
by several matrix-vector algorithms. The maximum magnitude eigenvalue of each matrix is reported on top of Figure
2a. In Figure 2c we plot the eigenvalue approximates for the matrix-vector algorithms. Finally, in Figure 2c we plot
the mean log scaled absolute error vs the number of matrix-vector queries made by the matrix-vector algorithms to
approximate the largest magnitude eigenvalue of the Facebook adjacency matrix [39].

3. Applications of Sublinear Methods

Parallel to the theoretical analysis of sublinear algorithms to approximate several properties of
matrices, my work also concentrates on applications of sublinear algorithms to practical problems. In
[1] we demonstrate the effectiveness of sublinear time algorithms to approximate all the eigenvalues
of several synthetic and real world matrices. The real world matrices include – 1) similarity matrix
of random data points drawn from a binary image, 2) adjacency matrices of social networks and



collaboration networks. Eigenvalues can be used to identify clusterability of graphs, and thus our
approximation algorithm can help in developing fast algorithms for clustering nodes in a network.
We observe relatively small error in approximating all eigenvalues, with the error decreasing as
the number of samples increases. We also observe in Figure 1 that the algorithms that leverage
sparsity information produces significant advantages over other randomized sampling algorithms for
adjacency matrices corresponding to graphs as a direct result of the power law degree distribution.

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of dataset chosen as landmark samples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e 

ap
pr

ox
im

at
io

n 
er

ro
r

STS-B
Nystrom
SMS-Nystrom
StaCUR(s)
StaCUR(d)
SiCUR
SkelApprox

Figure 3. Evaluation of various sublinear time algo-
rithms on the sentence similarity task. The x-axis is
the proportion of the dataset sampled.

Applications in NLP. Many machine learning tasks
center around the computation of pairwise similari-
ties between data points using an appropriately cho-
sen similarity function. E.g., in kernel methods, a
non-linear kernel inner product is used to measure
similarity, and often to construct a pairwise kernel
similarity matrix. Computing all pairwise similarities
for a data set with n points requires Ω(n2) similarity
computations. This can be a major runtime bottle-
neck, especially when each computation requires the
evaluation of a neural network or other expensive
operation. One approach to avoid this bottleneck is
to produce a compressed approximation to the n× n
pairwise similarity matrix K for the data set, but
avoid ever fully forming this matrix and run in sub-
linear time with respect to the size of K. Nyström approximation [54] is often used to produce
such compressed representation that can approximate PSD matrices, but is empirically unstable in
approximation of indefinite symmetric matrices. In [4] we propose a simple modification to Nyström
approximation (Submatrix-Shifted-Nyström) that stabilizes its application to any symmetric matrix.
We also show that both Submatrix-Shifted-Nyström, and a simple variant of CUR decomposition
[22, 23, 57] yield accurate approximations (see Figure 3) for a myriad of tasks in NLP like document
embedding, document classification, document co-reference, and sentence similarity. Moreover the
approximation algorithms also maintain downstream task performance in all these tasks while greatly
reducing the time and space required as compared to the exact similarity matrix.

4. Future Work and Open Questions

Our work leaves several open questions and avenues for future work. I want to develop a toolbox
that can approximate several properties of matrices using various algorithms especially using –
randomized, deterministic and sketching algorithms. I outline some concrete directions below.

Randomized Algorithms for Other Matrix Properties. Lanczos methods [40] has been
successfully applied to several core problems including eigenvalue approximation and singular value
approximations. In fact all eigenvalues can approximated up to additive error ±ϵn for any symmetric
matrices using Lanczos methods. Recently in [14], for a symmetric matrix A ∈ Rn×n, a sublinear
algorithm via kernel polynomial method [52] is proposed which can approximate total ℓ1 error of
eigenvalue approximation up to ϵ∥A∥1 using O(n/ϵ2) matrix-vector queries. We conjecture that first
using eigenvalue deflation via Lanczos methods and then combining with spectral density estimation,
the matrix-vector queries required to achieve the said bound can be improved to O(

√
n/ϵ2). This

would immediately improve the runtime of spectral density estimation applications including matrix
multiplication using Hessian matrices [44, 56], and matrix inversion.



Deterministic Sublinear Algorithms. Our work in [2] demonstrates that PSD matrices with
entries in {−1, 0, 1} can be approximated in the spectral norm with error up to ϵn by querying
near-optimal entries (Õ(n/ϵ)). This improves the general query complexity by a factor of O(1/ϵ).
However, it unknown if the improved query complexity bound can be applied to a wider class of PSD
matrices. We conjecture that this bound extends to PSD matrices with entries in {−2,−1, 0, 1, 2}.
A first step is to consider any PSD matrix A ∈ {0, 1, 2}n×n, such that for all i ∈ [n], Aii = 2 and
Aij ∈ {0, 1}, for i ̸= j. The least eigenvalue of such A− 2I is at least −2. Any unweighted graph
with a vertex set larger than 36 and smallest eigenvalue of the corresponding adjacency matrix
greater than or equal to −2 is called a generalized line graph [15, 30]. A generalized line graph is
made up to two kinds of graphs: a line graph and m disjoint cocktail party graphs. We finally restrict
this class of matrices such that A− 2I is the adjacency matrix of a line graph. We conjecture that
using the adjacency matrix of an expander graph where any two ϵn sized vertex sets are connected
by at least an edge, one can show that the adjacency matrix can be approximated in the spectral
norm with error up to ϵn using Õ(n/ϵ) entries, near-optimally.

Model Compression and Efficient Learning. Large parametric models have achieved dramatic
empirical success across many applications like object classification and language modelling. A better
understanding of why these models require such large numbers of parameters could help answer how
to reduce their computational costs. One simple way to reduce parameters is by model compression.
But most linear algebraic compression techniques do not translate to applicable learning algorithms.
My general goal here is to understand, fundamentally, how the parameter space can be compressed
using algebraic tools and careful manipulation of the feature space.

Consider the problem of network pruning [33, 11, 29], which removes hidden units from trained
models in either a manner that is structured [28, 35, 36, 42] (e.g., remove entire row of matrix, remove
channel of layer) or unstructured [31, 37, 25] (e.g., remove individual neurons). Given a weight
matrix Wi+1 ∈ Rmi×mi+1 at the ith layer and activation matrix Ai ∈ Rn×mi , for n data points, a
general goal in model compression is to approximate the product AiWi+1. A plethora of sublinear
sampling algorithms can be studied which minimizes error of the form ∥AiWi+1 − ÃiW̃i+1∥2F ,
including sublinear sampling methods [38, 51, 7, 41], approximate matrix multiplication [21, 18], and
matrix sparsification [12]. Thus, there are several directions which we can take to find compressed
activation and weight matrices. It will be interesting to see if these results with sublinear algorithms
for matrices can be extended to large neural models. Moreover, studying how the approximation
error of these sublinear algorithms affect the downstream task performance in neural networks can
help in designing efficient pruning algorithms.

Finally, sublinear algorithms for model compression can also be used to study memorization in
neural networks. Recent works [17, 16, 10, 9] demonstrate that memorization is prevalent among
overparameterized networks. Memorizing training data leads to an increase in the number of
parameters required in a learning model. This consequently leads to longer training and inference
times while also causing the model to overfit to certain parts of the training data. Additionally,
memorization renders the learning algorithm susceptible to adversarial data queries. Therefore,
we seek to quantify the amount of training data that was memorized in the original model but
lost due to the model compression. It is equally important that the performance of the learning
model only minimally degrades as a result of model compression. consequently, we also aim to
understand if reducing memorization impacts the downstream task performance of the learning
model. Our objective is to study the rate at which the model forgets individual training samples
without compromising the downstream task performance as a result of compression. Establishing a
theoretical bound on the rate of data forgetting due to model compression has remained an open
problem. We aim to establish a theoretical bound on the rate of data forgetting while also empirically
demonstrating the proportion of data forgotten by the learning model as a result of memorization.



Co-authored Papers

[1] Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and Archan Ray. “Sublinear
Time Eigenvalue Approximation via Random Sampling”. In: Proceedings of the 50th International
Colloquium on Automata, Languages and Programming (ICALP). 2023.

[2] Rajarshi Bhattacharjee, Gregory Dexter, Cameron Musco, Archan Ray, Sushant Sachdeva, and
David P Woodruff. “Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra”.
In: Proceedings of the 15th Conference on Innovations in Theoretical Computer Science (ITCS). 2024.

[3] Cameron Musco and Archan Ray. “Eigenvalue Approximation using Matrix-Vector Query Algorithms”.
In: In Preparation. 2023.

[4] Archan Ray, Nicholas Monath, Andrew McCallum, and Cameron Musco. “Sublinear Time Approxima-
tion of Text Similarity Matrices”. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI) (2022).

∗ The author listing for [1], [2], and [3] is alphabetical.

Other References

[5] Josh Alman and Virginia Vassilevska Williams. “A Refined Laser Method and Faster Matrix Multiplica-
tion”. In: Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2021.

[6] Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. “Testing Positive Semi-Definiteness via Random
Submatrices”. In: Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS) (2020).

[7] Ainesh Bakshi, Kenneth L Clarkson, and David P Woodruff. “Low-Rank Approximation with 1/ϵ1/3

Matrix-Vector Products”. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing
(STOC). 2022.

[8] Rajendra Bhatia. Matrix analysis. Vol. 169. Springer Science & Business Media, 2013.
[9] Robi Bhattacharjee, Sanjoy Dasgupta, and Kamalika Chaudhuri. “Data-Copying in Generative Models:

A Formal Framework”. In: http: // arxiv. org/ abs/ 2302. 13181 (2023).
[10] Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,

Shivanshu Purohit, and Edward Raf. “Emergent and predictable memorization in large language
models”. In: http: // arxiv. org/ abs/ 2304. 11158 (2023).

[11] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. “What is the state of
neural network pruning?” In: Proceedings of machine learning and systems (2020).

[12] Vladimir Braverman, Robert Krauthgamer, Aditya R Krishnan, and Shay Sapir. “Near-optimal entrywise
sampling of numerically sparse matrices”. In: Conference on Learning Theory. PMLR. 2021, pp. 759–773.

[13] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. “Linear and Sublinear Time Spectral
Density Estimation”. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing
(STOC) (2022).

[14] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. “Sublinear Time Spectral Density
Estimation”. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC).
2022, pp. 1144–1157.

[15] Peter J Cameron, Jean-Marie Goethals, Johan Jacob Seidel, and Ernest E Shult. “Line graphs, root
systems, and elliptic geometry”. In: Geometry and Combinatorics. 1991.

[16] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. “Quantifying memorization across neural language models”. In: http: // arxiv. org/ abs/
2202. 07646 (2022).

[17] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee,
Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. “Extracting training data from large
language models”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021.

[18] Michael B Cohen, Jelani Nelson, and David P Woodruff. “Optimal approximate matrix product in
terms of stable rank”. In: arXiv preprint arXiv:1507.02268 (2015).

http://arxiv.org/abs/2302.13181
http://arxiv.org/abs/2304.11158
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646


[19] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. “Fast Matrix Multiplication is
Stable”. In: Numerische Mathematik (2007).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding”. In: Proceedings of the 21st Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL) (2019).

[21] Petros Drineas, Ravi Kannan, and Michael W Mahoney. “Fast Monte Carlo algorithms for matrices III:
Computing a compressed approximate matrix decomposition”. In: SIAM Journal on Computing (2006).

[22] Petros Drineas, Michael W Mahoney, and Nello Cristianini. “On the Nyström Method for Approximating
a Gram Matrix for Improved Kernel-Based Learning.” In: Journal of Machine Learning Research (JMLR)
(2005).

[23] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. “Relative-Error CUR Matrix Decompo-
sitions”. In: SIAM Journal on Matrix Analysis and Applications (2008).

[24] Petros Drineas and Anastasios Zouzias. “A note on element-wise matrix sparsification via a matrix-valued
Bernstein inequality”. In: Inf. Process. Lett. 111.8 (2011), pp. 385–389.

[25] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable neural
networks”. In: http: // arxiv. org/ abs/ 1803. 03635 (2018).

[26] Alex Gittens and Joel A Tropp. “Tail Bounds for All Eigenvalues of a Sum of Random Matrices”. In:
http: // arxiv. org/ abs/ 1104. 4513 (2011).

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image
Recognition”. In: Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016.

[28] Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu. “Reshaping deep neural network for
fast decoding by node-pruning”. In: 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2014.

[29] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. “Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks”. In: The Journal
of Machine Learning Research (2021).

[30] Alan J Hoffman. “On graphs whose least eigenvalue exceeds- 1 −
√
2”. In: Linear Algebra and its

Applications (1977).
[31] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. “Network trimming: A data-driven neuron

pruning approach towards efficient deep architectures”. In: http: // arxiv. org/ abs/ 1607. 03250
(2016).

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classification with Deep Convolu-
tional Neural Networks”. In: Communications of the ACM (2017).

[33] Andrey Kuzmin, Markus Nagel, Saurabh Pitre, Sandeep Pendyam, Tijmen Blankevoort, and Max
Welling. “Taxonomy and evaluation of structured compression of convolutional neural networks”. In:
arXiv preprint arXiv:1912.09802 (2019).

[34] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph Evolution: Densification and Shrinking
Diameters”. In: ACM transactions on Knowledge Discovery from Data (TKDD) (2007).

[35] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. “Pruning filters for efficient
convnets”. In: http: // arxiv. org/ abs/ 1608. 08710 (2016).

[36] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. “Provable filter pruning
for efficient neural networks”. In: http: // arxiv. org/ abs/ 1911. 07412 (2019).

[37] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. “Learning
efficient convolutional networks through network slimming”. In: Proceedings of the IEEE international
conference on computer vision. 2017.

[38] Michael W Mahoney and Petros Drineas. “CUR matrix decompositions for improved data analysis”. In:
Proceedings of the National Academy of Sciences (2009).

[39] Julian J McAuley and Jure Leskovec. “Learning to discover social circles in ego networks.” In: Proceedings
of the 25th Advances in Neural Information Processing Systems (NeurIPS). 2012.

[40] Cameron Musco and Christopher Musco. “Randomized Block Krylov Methods for Stronger and Faster
Approximate Singular Value Decomposition”. In: Proceedings of the 28th Advances in Neural Information
Processing Systems (NeurIPS) (2015).

http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1104.4513
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1911.07412


[41] Cameron Musco and David P Woodruff. “Sublinear time low-rank approximation of positive semidefinite
matrices”. In: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 2017.

[42] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. “Data-
independent neural pruning via coresets”. In: http: // arxiv. org/ abs/ 1907. 04018 (2019).

[43] Deanna Needell, William Swartworth, and David P Woodruff. “Testing Positive Semidefiniteness
Using Linear Measurements”. In: Proceedings of the 63rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2022.

[44] Barak A Pearlmutter. “Fast exact multiplication by the Hessian”. In: Neural computation (1994).
[45] Cyrus Rashtchian, David P Woodruff, and Hanlin Zhu. “Vector-matrix-vector queries for solving linear

algebra, statistics, and graph problems”. In: http: // arxiv. org/ abs/ 2006. 14015 (2020).
[46] Mark Rudelson and Roman Vershynin. “Sampling from Large Matrices: An Approach Through Geometric

Functional Analysis”. In: Journal of the ACM (JACM) (2007).
[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. “Imagenet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision (IJCV) (2015).

[48] Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. “Querying a Matrix Through
Matrix-Vector Products”. In: ACM Transactions on Algorithms (TALG) (2021).

[49] William Swartworth and David P Woodruff. “Optimal Eigenvalue Approximation via Sketching”. In:
Proceedings of the 64th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2023.

[50] William Swartworth and David P Woodruff. “Optimal Eigenvalue Approximation via Sketching”. In:
Proceedings of the 64th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (2023).

[51] Shusen Wang and Zhihua Zhang. “Improving CUR matrix decomposition and the Nyström approximation
via adaptive sampling”. In: The Journal of Machine Learning Research (2013).

[52] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. “The kernel polynomial
method”. In: Reviews of modern physics (2006).

[53] Hermann Weyl. “The asymptotic distribution law of the eigenvalues of linear partial differential equations
(with an application to the theory of cavity radiation)”. In: Mathematical Annals (1912).

[54] Christopher Williams and Matthias Seeger. “Using the Nyström Method to Speed up Kernel Machines”.
In: Proceedings of the 14th Advances in Neural Information Processing Systems (NeurIPS). 2001.

[55] David P Woodruff. “Sketching as a tool for numerical linear algebra”. In: http: // arxiv. org/ abs/
1411. 4357 (2014).

[56] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. “Pyhessian: Neural networks
through the lens of the hessian”. In: 2020 IEEE international conference on big data (Big data). 2020.

[57] Kai Zhang, Ivor W Tsang, and James T Kwok. “Improved Nyström Low-Rank Approximation and
Error Analysis”. In: Proceedings of the 25th International Conference on Machine Learning (ICML).
2008.

http://arxiv.org/abs/1907.04018
http://arxiv.org/abs/2006.14015
http://arxiv.org/abs/1411.4357
http://arxiv.org/abs/1411.4357

	1. Introduction
	2. Theoretical Analysis of Sublinear Methods
	3. Applications of Sublinear Methods
	4. Future Work and Open Questions
	Co-authored Papers
	Other References

