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1. Introduction

The need for fast algorithms cannot be overstated in an age where the size of datasets as well
as parameters required in learning algorithms has grown rapidly [47, 27, 32, 20]. There are several
ways to accelerate processing of large data, and sublinear algorithms form an important cornerstone
of such methods. Sublinear algorithms access only a small part of the input data, thus they scale
well to very large datasets.

A major focus of my work is on the development of fast and especially sublinear algorithms. My
recent works have been on pushing the boundaries of sublinear time or sublinear query algorithms in
the context of matrices and their applications. Matrices are ubiquitous mathematical structures in
both computer science and, in particular, machine learning, and are often used to represent data
and parameters of learning models. As such, very large datasets and complex learning models have
led to a requirement for efficient computational algorithms. Since only a small part of the original
matrix is observed, approximation of the the full matrix is inherent to sublinear algorithms. One of
my primary goals is to establish theoretical and empirical bounds on the error of approximation. My
research is driven by two major themes:

Theoretical Analysis of Sublinear Methods. My work has contributed to the development of fast
algorithms for several core problems involving matrices. These include eigenspectrum approximation,
singular value and vector approximation, testing whether all eigenvalues of a matrix are positive, and
low-rank approximation of matrices. These properties provide valuable insights into the low-rank
structure of matrices, the clusterability of data points, and play a pivotal role in various engineering
and experimental problems.

Our work appearing in ICALP 2023 [1], gives the first sublinear algorithms that compute non-
trivial approximations to all the eigenvalues of a symmetric matrix using various random sampling
techniques. We extend these results to deterministic sampling algorithms in our work appearing at
ITCS 2024 [2]. In our work, we develop an algorithm that approximates symmetric matrices in the
spectral norm using element-wise sparsification. Similar results can be obtained with high probability
using uniform sampling [24]. Surprisingly, our work shows that there exists a fixed set of entries
that can be sampled from all bounded entry symmetric matrices to achieve similar approximation
guarantees. We further extend our algorithms to obtain the first deterministic sublinear query
algorithms for eigenspectrum approximation, and the first o(nω) deterministic algorithms that can
compute singular value and vector approximations [2], where ω ≈ 2.37 is the exponent of the matrix
multiplication [19, 5].

Implicit matrices enhance efficiency in various applications, especially when the matrix is a function
of another (e.g., covariance or Hessian matrices). Computing such functions can be expensive, but
using algorithms that can query a matrix A with a vector vi offers a more computationally efficient
approach. These algorithms are called matrix-vector query algorithms. Considering that matrix-
vector query algorithms can be effiently parallelized in distributed systems and can be significantly
faster when a function of matrix is of interest, it is important to study matrix-vector query algorithms.
Our recent work [3] explores eigenspectrum approximation using matrix-vector queries. Notably,
research [49] shows that a query-optimal non-adaptive algorithm can approximate symmetric matrix
eigenvalues with error ϵ∥A∥F . We demonstrate existence of a wider class of adaptive matrix-
vector query algorithms that are nearly query optimal. We also show that one of these adaptive
algorithms can be converted to a non-adaptive matrix-vector query optimal algorithm. While these
algorithms achieve the eigenvalue approximation error of ϵ∥A∥F with near-optimal matrix-vector
query complexity, it is also important to understand how they perform empirically. To this end, our



experiments demonstrate that matrix-vector query algorithms that non-trivially approximate a larger
number of eigenvalues in the eigenspectrum of a matrix perform better when minimizing the largest
error of approximation of any eigenvalue is of interest. Note that for a fixed number of matrix-vector
queries, adaptive methods non-trivially approximates a smaller number of eigenvalues as compared
to the non-adaptive algorithms. Thus, when minimizing the largest error of approximation of any
eigenvalue is of interest, the non-adaptive matrix-vector query algorithms are empirically superior.
However, when the approximating the extremal eigenvalues of a matrix is of interest, the adaptive
matrix-vector query algorithms significantly outperform the non-adaptive algorithms.

Applications of Sublinear Methods. In parallel to theoretical analysis, I am also interested
in applications of theoretically motivated matrix approximation algorithms to various domains.
We have demonstrated the empirical performance of randomized algorithms in approximation of
eigenvalues of symmetric matrices on several synthetic and real world matrices [1]. Moreover in our
work appearing in AAAI 2022 [4], we have shown that low-rank approximation of matrices can be
used to develop fast algorithms for machine learning with application in natural language processing
(NLP). Specifically, we show that matrix approximations can maintain downstream task performance
in three core NLP tasks – 1) document embedding, 2) approximating similarity matrices generated
using cross-encoders [20] and 3) approximating the similarity function used to determine coreference
relationships across documents. One of my long term goals is to develop a toolkit that can be used
to maintain performance of learning algorithms while also significantly speeding up computation.
This can then be applied to develop fast learning algorithms that are computationally efficient.

In the following paragraphs I summarize my research and how they tie into the general research
themes mentioned above.

2. Theoretical Analysis of Sublinear Methods

Sublinear time or sublinear query algorithms can significantly improve computation complexity of
various problems in computer science and linear algebra. Although significant work exists that uses
sublinear algorithms to approximate matrices, several avenues remain open. We begin by describing
our work on approximating the eigenvalues of a symmetric matrix.
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Figure 1. Log of the average scaled absolute ap-
proximation error vs. log of the sampling rate for our
random sampling algorithms compared with approxi-
mation by 0, for approximating the largest magnitude
eigenvalue of the adjacency matrix of the graph of
co-references in condensed matter papers in arXiv
[34].

Eigenvalue Approximation. Eigenvalues are ex-
tensively studied in various fields, with applications
in engineering, optimization, data analysis, spectral
graph theory, and other fields. Computing eigen-
values with high accuracy using traditional matrix
multiplication methods for dense matrices requires
O(nω) runtime. However, in practice, the runtime
is closer to O(n3). As the dimension of the matrix
(n) increases, this computational complexity becomes
intractable.

In our work [1], we propose a sublinear time ran-
domized algorithm that approximates all the eigen-
values of a symmetric matrix with bounded entries
by sampling a random principal submatrix of the
input matrix. Our result can be viewed as a con-
centration bound on the complete eigenspectrum of
a random submatrix, significantly extending known
bounds on just the singular values (the magnitudes
of the eigenvalues) [13, 46, 26]. Specifically, for any
matrix A ∈ Rn×n with a maximum entry magnitude ∥A∥∞ ≤ 1, our work demonstrates that a



simple algorithm can approximate all the eigenvalues of A with additive error of up to ±ϵn by
randomly sampling an Õ

(
log3 n
ϵ3

)
× Õ

(
log3 n
ϵ3

)
principal submatrix of A with high probability. We

also give improved error bounds when the rows of the input matrix can be sampled with probabilities
proportional to their sparsities or their squared ℓ2 norms. Even for the strictly easier problems
of approximating the singular values or testing the existence of large negative eigenvalues [6], our
results are the first that take advantage of non-uniform sampling to give improved error bounds.

A comparison of these algorithms can be seen in Figure 1. The plot demonstrates that our methods
achieve very good approximations even at a low sampling rate. For real world graphs, such as the
adjacency matrix of the arXiv co-reference graph [34], which have a power-law degree distribution,
sparsity based sampling techniques significantly outperform other sampling algorithms.

Deterministic Spectral Approximation. Although randomized algorithms are prevalent in the
literature on matrix approximation, no deterministic algorithm had existed for computing eigenvalues
of symmetric matrices in sublinear time. We observe that any algorithm that can approximate a
matrix in the spectral norm, directly gives an eigenvalue approximation error bound via Weyl’s
inequality [53, 8]. In [2], we develop the first deterministic algorithms that approximate all symmetric
matrices with bounded entries in the spectral norm using sublinear queries. Specifically, we observe
that any matrix S ∈ Rn×n that satisfies ∥1− S∥2 ≤ ϵn, where 1 is the all-ones matrix, also yields
universal sparsifiers for any bounded-entry positive semidefinite (PSD) matrix. That is, given a
PSD matrix, A with ∥A∥∞ ≤ 1, ∥A−A ◦ S∥2 ≤ ϵn. Our results also extend to non-PSD matrices,
with a tighter error bound of ϵ ·max(n, ∥A∥1), where ∥A∥1 is the nuclear norm of A. Moreover, we
demonstrate that the number of entries in A that needs to be read by such sparsifiers is near-optimal
(tight up to logarithmic factors). A matrix S satisfying the bound on the all-ones matrix can be
optimally constructed using the adjacency matrix of a Ramanujan graph with the appropriate
number of non-zero entries.

These results immediately yield the eigenvalue approximation error bound for all symmetric
matrices. Furthermore, we extend these algorithms to give the first o(nω)-time deterministic
algorithms for several central problems related to singular value and singular vector approximations.
Additionally, we present the first o(nω)-time deterministic algorithm to test whether all the eigenvalues
of a matrix is greater than 0 or if the smallest eigenvalue is at least −ϵmax(n, ∥A∥1). An optimal
randomized algorithm for this problem with detection threshold −ϵn was presented in [6]. Thus our
work in [2] significantly extends the boundaries of deterministic algorithms in these applications.
The success of these applications thus opens up the possibility for new classes of fast deterministic
algorithms for general matrices.

Spectrum Approximation using Matrix-Vector Algorithms. We also study eigenvalue ap-
proximation in the matrix-vector query model [48, 45]. Within this model, the underlying matrix
A ∈ Rn×n is often implicit and can only be accessed by using matrix-vector queries of the form
Ax ∈ Rn where x ∈ Rn is the query vector. x can be chosen randomly and possibly adaptively – i.e.,
at time t, xt can be chosen based on the prior observations Ax1,Ax2, . . . ,Axt−1 ∈ Rn using query
vectors x1,x2, . . . ,xt−1 ∈ Rn. When xt is chosen non-adaptively, the matrix-vector query algorithms
are often called linear sketching. Example applications of matrix-vector query algorithms include
Lanczos or Krylov methods [40], testing if a matrix is PSD [43], and matrix sketching algorithms
[55]. Moreover, given the current advancements in hardware capabilities, matrix-vector products can
be computed in a distributive and parallel setting, resulting in very fast algorithms.

Given the matrix-vector query model, we theoretically and empirically investigate algorithms
that approximate the eigenvalues of A. In [50], the authors show that the query complexity of
approximating each eigenvalue of a symmetric matrix A up to error ϵ∥A∥F is Ω(1/ϵ2) using a query
optimal non-adaptive algorithm. Moreover, [50] also demonstrates that the lower bound query
complexity for any matrix-vector query algorithm (both adaptive and non-adaptive) is Ω(1/ϵ2).



In our work [3], we empirically investigate the practical computational overhead for achieving
eigenvalue approximation using several matrix-vector query algorithms. Particularly, we investigate
the spectrum of matrix-vector algorithms ranging from non-adaptive to massively adaptive algorithms,
and study how adaptivity affects practical performance of these algorithms to approximate the
eigenspectrum of a matrix.

We show that there is a spectrum of adaptive matrix-vector query algorithm which uses O(log n)-
factor optimal matrix-vector queries to approximate all the eigenvalues of the input matrix. We
also introduce a new non-adaptive algorithm that matches the sampling complexity lower bound
given in [50]. Empirically, we observe that for a fixed number of matrix-vector queries, non-adaptive
algorithms outperform adaptive algorithms when the error is measured in the ℓ∞-norm. This is
because a wider range of eigenvalues of the input matrix are approximated non-trivially using
non-adaptive algorithms for any fixed number of matrix-vector queries by any adaptive algorithm.
When approximating the largest magnitude eigenvalue of a symmetric matrix is of interest adaptive
methods outperform non-adaptive algorithms. We summerize these observations in Figure 2. In
the asymptotic limit, the query complexity bound is theoretically consistent (ignoring constant log
factors) across all matrix-vector query algorithms. Our empirical observations help us understand
their differences in performance under various error norms. This study helps in designing algorithms
which can deployed in a distributed and parallel setting, leading to very fast algorithms which
requires computing eigenvalues. Moreover, the interplay between number of matrix-vector queries
and adaptivity would help in the choice of algorithms to approximate eigenvalues under specific
constraints or requirements.
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(a) Mean log ℓ∞ error vs log matrix-vector
queries.
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matrix-vector queries.
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(c) Approximation error of the largest
magnitude eigenvalue.
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Figure 2. Summary of observations for Facebook adjacency matrix [39]. Here we present some key
observations of using various matrix-vector query algorithms to approximate eigenvalues of the Facebook adjacency
matrix [39]. In Figure 2a we plot the mean log scaled absolute ℓ∞-error vs the number of matrix-vector queries made
by several matrix-vector algorithms. The maximum magnitude eigenvalue of each matrix is reported on top of Figure
2a. In Figure 2c we plot the eigenvalue approximates for the matrix-vector algorithms. Finally, in Figure 2c we plot
the mean log scaled absolute error vs the number of matrix-vector queries made by the matrix-vector algorithms to
approximate the largest magnitude eigenvalue of the Facebook adjacency matrix [39].

3. Applications of Sublinear Methods

Parallel to the theoretical analysis of sublinear algorithms to approximate several properties of
matrices, my work also concentrates on applications of sublinear algorithms to practical problems. In
[1] we demonstrate the effectiveness of sublinear time algorithms to approximate all the eigenvalues
of several synthetic and real world matrices. The real world matrices include – 1) similarity matrix
of random data points drawn from a binary image, 2) adjacency matrices of social networks and



collaboration networks. Eigenvalues can be used to identify clusterability of graphs, and thus our
approximation algorithm can help in developing fast algorithms for clustering nodes in a network.
We observe relatively small error in approximating all eigenvalues, with the error decreasing as
the number of samples increases. We also observe in Figure 1 that the algorithms that leverage
sparsity information produces significant advantages over other randomized sampling algorithms for
adjacency matrices corresponding to graphs as a direct result of the power law degree distribution.
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Figure 3. Evaluation of various sublinear time algo-
rithms on the sentence similarity task. The x-axis is
the proportion of the dataset sampled.

Applications in NLP. Many machine learning tasks
center around the computation of pairwise similari-
ties between data points using an appropriately cho-
sen similarity function. E.g., in kernel methods, a
non-linear kernel inner product is used to measure
similarity, and often to construct a pairwise kernel
similarity matrix. Computing all pairwise similarities
for a data set with n points requires Ω(n2) similarity
computations. This can be a major runtime bottle-
neck, especially when each computation requires the
evaluation of a neural network or other expensive
operation. One approach to avoid this bottleneck is
to produce a compressed approximation to the n× n
pairwise similarity matrix K for the data set, but
avoid ever fully forming this matrix and run in sub-
linear time with respect to the size of K. Nyström approximation [54] is often used to produce
such compressed representation that can approximate PSD matrices, but is empirically unstable in
approximation of indefinite symmetric matrices. In [4] we propose a simple modification to Nyström
approximation (Submatrix-Shifted-Nyström) that stabilizes its application to any symmetric matrix.
We also show that both Submatrix-Shifted-Nyström, and a simple variant of CUR decomposition
[22, 23, 57] yield accurate approximations (see Figure 3) for a myriad of tasks in NLP like document
embedding, document classification, document co-reference, and sentence similarity. Moreover the
approximation algorithms also maintain downstream task performance in all these tasks while greatly
reducing the time and space required as compared to the exact similarity matrix.

4. Future Work and Open Questions

Our work leaves several open questions and avenues for future work. I want to develop a toolbox
that can approximate several properties of matrices using various algorithms especially using –
randomized, deterministic and sketching algorithms. I outline some concrete directions below.

Randomized Algorithms for Other Matrix Properties. Lanczos methods [40] has been
successfully applied to several core problems including eigenvalue approximation and singular value
approximations. In fact all eigenvalues can approximated up to additive error ±ϵn for any symmetric
matrices using Lanczos methods. Recently in [14], for a symmetric matrix A ∈ Rn×n, a sublinear
algorithm via kernel polynomial method [52] is proposed which can approximate total ℓ1 error of
eigenvalue approximation up to ϵ∥A∥1 using O(n/ϵ2) matrix-vector queries. We conjecture that first
using eigenvalue deflation via Lanczos methods and then combining with spectral density estimation,
the matrix-vector queries required to achieve the said bound can be improved to O(

√
n/ϵ2). This

would immediately improve the runtime of spectral density estimation applications including matrix
multiplication using Hessian matrices [44, 56], and matrix inversion.



Deterministic Sublinear Algorithms. Our work in [2] demonstrates that PSD matrices with
entries in {−1, 0, 1} can be approximated in the spectral norm with error up to ϵn by querying
near-optimal entries (Õ(n/ϵ)). This improves the general query complexity by a factor of O(1/ϵ).
However, it unknown if the improved query complexity bound can be applied to a wider class of PSD
matrices. We conjecture that this bound extends to PSD matrices with entries in {−2,−1, 0, 1, 2}.
A first step is to consider any PSD matrix A ∈ {0, 1, 2}n×n, such that for all i ∈ [n], Aii = 2 and
Aij ∈ {0, 1}, for i ̸= j. The least eigenvalue of such A− 2I is at least −2. Any unweighted graph
with a vertex set larger than 36 and smallest eigenvalue of the corresponding adjacency matrix
greater than or equal to −2 is called a generalized line graph [15, 30]. A generalized line graph is
made up to two kinds of graphs: a line graph and m disjoint cocktail party graphs. We finally restrict
this class of matrices such that A− 2I is the adjacency matrix of a line graph. We conjecture that
using the adjacency matrix of an expander graph where any two ϵn sized vertex sets are connected
by at least an edge, one can show that the adjacency matrix can be approximated in the spectral
norm with error up to ϵn using Õ(n/ϵ) entries, near-optimally.

Model Compression and Efficient Learning. Large parametric models have achieved dramatic
empirical success across many applications like object classification and language modelling. A better
understanding of why these models require such large numbers of parameters could help answer how
to reduce their computational costs. One simple way to reduce parameters is by model compression.
But most linear algebraic compression techniques do not translate to applicable learning algorithms.
My general goal here is to understand, fundamentally, how the parameter space can be compressed
using algebraic tools and careful manipulation of the feature space.

Consider the problem of network pruning [33, 11, 29], which removes hidden units from trained
models in either a manner that is structured [28, 35, 36, 42] (e.g., remove entire row of matrix, remove
channel of layer) or unstructured [31, 37, 25] (e.g., remove individual neurons). Given a weight
matrix Wi+1 ∈ Rmi×mi+1 at the ith layer and activation matrix Ai ∈ Rn×mi , for n data points, a
general goal in model compression is to approximate the product AiWi+1. A plethora of sublinear
sampling algorithms can be studied which minimizes error of the form ∥AiWi+1 − ÃiW̃i+1∥2F ,
including sublinear sampling methods [38, 51, 7, 41], approximate matrix multiplication [21, 18], and
matrix sparsification [12]. Thus, there are several directions which we can take to find compressed
activation and weight matrices. It will be interesting to see if these results with sublinear algorithms
for matrices can be extended to large neural models. Moreover, studying how the approximation
error of these sublinear algorithms affect the downstream task performance in neural networks can
help in designing efficient pruning algorithms.

Finally, sublinear algorithms for model compression can also be used to study memorization in
neural networks. Recent works [17, 16, 10, 9] demonstrate that memorization is prevalent among
overparameterized networks. Memorizing training data leads to an increase in the number of
parameters required in a learning model. This consequently leads to longer training and inference
times while also causing the model to overfit to certain parts of the training data. Additionally,
memorization renders the learning algorithm susceptible to adversarial data queries. Therefore,
we seek to quantify the amount of training data that was memorized in the original model but
lost due to the model compression. It is equally important that the performance of the learning
model only minimally degrades as a result of model compression. consequently, we also aim to
understand if reducing memorization impacts the downstream task performance of the learning
model. Our objective is to study the rate at which the model forgets individual training samples
without compromising the downstream task performance as a result of compression. Establishing a
theoretical bound on the rate of data forgetting due to model compression has remained an open
problem. We aim to establish a theoretical bound on the rate of data forgetting while also empirically
demonstrating the proportion of data forgotten by the learning model as a result of memorization.
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